Problem 4.5

Show that

$$
\Theta(\theta)=A \ln [\tan (\theta / 2)]
$$

satisfies the θ equation (Equation 4.25), for $\ell=m=0$. This is the unacceptable "second solution"-what's wrong with it?

Solution

Equation 4.25 on page 135 is the ODE for $\Theta(\theta)$.

$$
\begin{equation*}
\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[\ell(\ell+1) \sin ^{2} \theta-m^{2}\right] \Theta=0 \tag{4.25}
\end{equation*}
$$

If $\ell=0$ and $m=0$, then

$$
\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)=0
$$

Divide both sides by $\sin \theta$.

$$
\frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)=0
$$

Integrate both sides with respect to θ.

$$
\sin \theta \frac{d \Theta}{d \theta}=C_{1}
$$

Divide both sides by $\sin \theta$.

$$
\frac{d \Theta}{d \theta}=\frac{C_{1}}{\sin \theta}
$$

Integrate both sides with respect to θ again.

$$
\begin{aligned}
\Theta(\theta) & =\int \frac{C_{1}}{\sin \theta}+C_{2} \\
& =C_{1} \int \csc \theta+C_{2} \\
& =C_{1} \ln \left|\tan \frac{\theta}{2}\right|+C_{2}
\end{aligned}
$$

And since $0 \leq \theta \leq \pi$, the absolute value sign can be removed.

$$
\Theta(\theta)=C_{1} \ln \left(\tan \frac{\theta}{2}\right)+C_{2}
$$

The logarithm is the unacceptable second solution. As Mr. Griffiths said on page 136, the problem with it is that it blows up at $\theta=0$ and $\theta=\pi$. Therefore, it's irrelevant physically.

